How Strong Is the Hydrogen Bond in Hybrid Perovskites?

نویسندگان

  • Katrine L Svane
  • Alexander C Forse
  • Clare P Grey
  • Gregor Kieslich
  • Anthony K Cheetham
  • Aron Walsh
  • Keith T Butler
چکیده

Hybrid organic-inorganic perovskites represent a special class of metal-organic framework where a molecular cation is encased in an anionic cage. The molecule-cage interaction influences phase stability, phase transformations, and the molecular dynamics. We examine the hydrogen bonding in four AmBX3 formate perovskites: [Am]Zn(HCOO)3, with Am+ = hydrazinium (NH2NH3+), guanidinium (C(NH2)3+), dimethylammonium (CH3)2NH2+, and azetidinium (CH2)3NH2+. We develop a scheme to quantify the strength of hydrogen bonding in these systems from first-principles, which separates the electrostatic interactions between the amine (Am+) and the BX3- cage. The hydrogen-bonding strengths of formate perovskites range from 0.36 to 1.40 eV/cation (8-32 kcalmol-1). Complementary solid-state nuclear magnetic resonance spectroscopy confirms that strong hydrogen bonding hinders cation mobility. Application of the procedure to hybrid lead halide perovskites (X = Cl, Br, I, Am+ = CH3NH3+, CH(NH2)2+) shows that these compounds have significantly weaker hydrogen-bonding energies of 0.09 to 0.27 eV/cation (2-6 kcalmol-1), correlating with lower order-disorder transition temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on π-delocalization

The concept of Resonance Assisted Hydrogen Bond (RAHB), which usually occurs in b diketons, has a remarkable role in chemistry. These molecules, which contain heteroatom particularly O and N, are species with biological interest in protein folding and DNA pairing. Therefore, the amplification of hydrogen bonds strength by substituents may be important in life scie...

متن کامل

Investigation of Substituent Effects on the Strength of Hydrogen Bond in the Guanine: Cytosine Base Pairs: A Theoretical Study

In the present work, the substituent effect on the strength of H-bonds in the guanine – cytosine base pair was studied when the substituents are connected to the guanine base through a phenyl ring. In this study, guanine was substituted in the H8 and H9 positions by electron donating (ED) and electron withdrawing (EW) groups mediated by a phenyl ring in the gas phase. The calculations were perf...

متن کامل

ONE-DIMENSIONAL TREATMENT OF HYDROGEN BOND PART1 THE CASE OF THE LINEAR HYDROGENBOND

The one-dimensional model of Lippincott and Schroeder for hydrogen bond has Been re-examined and it has been shown that O-H bond distance depends on repulsive van der Waals and attractive electrostatic potentials.it has been shown that constant b in the van der Waals repulsion potential is not transferable to all hydrogen bonds. The possibility of obtaining the semi-empircal parameters i...

متن کامل

A theoretical study on quadrupole coupling parameters of HRPII Protein modeled as 310-helix & α-helix structures

A fragment of Histidine rich protein II (HRP II 215-236) was investigated by 14N and 17O electric field gradient, EFG, tensor calculations using DFT. This study is intended to explore the differences between 310-helix and α-helix of HRPII both in the gas phase and in solution. To achieve the aims, the 17O and 14N NQR parameters of a fragment of HRPII (215-236) for both structures are calculated...

متن کامل

Theory of Hydrogen Migration in Organic–Inorganic Halide Perovskites**

Solar cells based on organic-inorganic halide perovskites have recently been proven to be remarkably efficient. However, they exhibit hysteresis in their current-voltage curves, and their stability in the presence of water is problematic. Both issues are possibly related to a diffusion of defects in the perovskite material. By using first-principles calculations based on density functional theo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017